

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Plan 0.5 documentation

Welcome to Plan

[image: Plan: Cron jobs in Python]
Welcome to Plan’s documentation. This documentation is mainly divided into
two parts. You can get started with Installation and then have a look
at Quickstart in order to have a feel about how plan looks like. You
can head over to Tutorial if you want to know how to use Plan in real
life. The rest part of the user’s guide is about how to define one specific
job or plan object and how to run one plan object so that it talks with your
crontab process. If you are interested in the internals of Plan, go to the
API documentation.

User’s Guide

This part focuses on instructions for Cron jobs management with Plan.

	Installation
	virtualenv

	Install Plan

	Development Version

	Quickstart
	A Minimal Example

	Explanation

	Tutorial
	Introducing

	Basic

	One Command

	Scripts

	More Jobs

	Job Definition
	Every

	At

	Path

	Environment

	Output

	Plan Definition
	Name

	User

	Environment Variable

	Bootstrap

	Patterns

	Job Types
	Command Job

	Script Job

	Module Job

	Raw Job

	Define Your Own Job Types

	Run Types
	Check

	Write

	Update

	Clear

	Commands
	Plan-Quickstart

API Reference

This part focuses on information on a specific function, class or method.

	API
	Plan Object

	Job Objects

Additional Stuff

Changelog and license here if you are interested.

	Python 3 Support
	Requirements

	Plan Changelog
	Version 0.1

	Version 0.2

	Version 0.3

	Version 0.4

	Version 0.5

	License
	Authors

	Plan License

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Installation

You will need Python 2.6 or newer to get started, so firstly you should have
an up to date Python 2.x installation. If you want to use Plan with Python 3
have a look at Python 3 Support.

virtualenv

Virtualenv is really great, maybe it is what you want to use during
development. Why virtualenv? There are chances that you use Python for
other projects besides Plan-managed cron jobs. It is likely that you will
be working with different versions of Python, or libraries. And virtualenv
is the solution if two of your projects have conflicting dependencies.

You can install virtualenv by the following commands:

$ sudo easy_install virtualenv

or better:

$ sudo pip install virtualenv

Once you have virtualenv installed, it is easy to set up one working
environment. Let’s create one project folder and one venv folder
for example:

$ mkdir myproject
$ cd myproject
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip...done.

Now if you want to activate the corresponding environment, just do:

$. venv/bin/activate

Install Plan

You can just type the following command to get Plan:

$ pip install plan

If you are not using virtualenv, you will have to do one system-wide
installation:

$ sudo pip install plan

Development Version

Get the source code from github and run it in development mode:

$ git clone https://github.com/fengsp/plan.git
$ cd plan
$ virtualenv venv
New python executable in venv/bin/python
Installing setuptools, pip...done.
$. venv/bin/activate
$ python setup.py develop
...
Finished processing dependencies for Plan

Then you can use git pull origin to update to the latest version.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Quickstart

This page gives a good introduction to Plan. If you do not have Plan
installed, check out Installation section.

A Minimal Example

A simple usage looks like this:

from plan import Plan

cron = Plan()

cron.command('ls /tmp', every='1.day', at='12:00')
cron.command('pwd', every='2.month')
cron.command('date', every='weekend')

if __name__ == '__main__':
 cron.run()

Just save it as schedule.py (or whatever you want) and run it with your
Python interpreter. Make sure to not name it plan.py because it would
conflict with Plan itself.

Now we do not run with one explicit run_type, default run_type check will be
used, or you can just get your cron syntax content by access
cron_content, you should see your cron syntax jobs in the
output of terminal:

Begin Plan generated jobs for: main
0 12 * * * ls /tmp
0 0 1 1,3,5,7,9,11 * pwd
0 0 * * 6,0 date
End Plan generated jobs for: main

It seems everything goes fine, we can write it to crontab now:

if __name__ == '__main__':
 cron.run('write')

Explanation

So what did the above code do?

	First we imported the Plan class. An instance of this
class will be one group of cron jobs.

	Next we create an instance of this class. We are not passing any arguments
here, though, the first argument is the name of this group of cron jobs.
In our case, we have the default name ‘main’ here. For more information
have a look at the Plan Definition documentation.

	We then use the command() to register three command jobs on
this Plan object.

	Finally we run this Plan object and check your cron syntax jobs or write
it to your crontab, see Run Types for more details.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Tutorial

You want to manage your cron jobs with Python and Plan? Here you can learn
that by this tutorial. In this tutorial I will show you how to use Plan
to do cron jobs in Python. After this you should be easily creating your own
cron jobs and learn the common patterns of Plan.

If you want the full source code, check out example source [https://github.com/fengsp/plan/tree/master/examples].

Introducing

We will explain our needs here, basically we want to do the following things:

	We want to log our server running status every 4 hours.

	We are running one Python web application and want to run a few scripts
at different times.

	As time goes on, I have a few more commands and scripts to run.

Basic

Let’s get our basic schedule file:

$ mkdir schedule
$ cd schedule
$ plan-quickstart

Now you can see a schedule.py under your schedule directory,
plan-quickstart is the command that comes with Plan for creating one
example file, you can run plan-quickstart --help for more details. Then
you can modify this file for your own needs, the file looks like this:

-*- coding: utf-8 -*-

Use this file to easily define all of your cron jobs.
#
It's helpful to understand cron before proceeding.
http://en.wikipedia.org/wiki/Cron
#
Learn more: http://github.com/fengsp/plan

from plan import Plan

cron = Plan()

register one command, script or module
cron.command('command', every='1.day')
cron.script('script.py', path='/web/yourproject/scripts', every='1.month')
cron.module('calendar', every='feburary', at='day.3')

if __name__ == "__main__":
 cron.run()

One Command

Let’s begin with one little command, quite clear:

cron.command('top', every='4.hour', output=
 dict(stdout='/tmp/top_stdout.log',
 stderr='/tmp/top_stderr.log'))

Run python schedule.py and run it with check mode, you will see the
following cron syntax content:

Begin Plan generated jobs for: main
0 0,4,8,12,16,20 * * * top >> /tmp/top_stdout.log 2>> /tmp/top_stderr.log
End Plan generated jobs for: main

When you call run(), you can choose which run-type(default
to be check) you want to use, for more details on run types, check
Run Types out.

Scripts

I have one script I want to run every day:

cron.script('script.py', every='1.day', path='/web/yourproject/scripts',
 environment={'YOURAPP_ENV': 'production'})

And now we have one more cron entry:

0 0 * * * cd /web/yourproject/scripts && YOURAPP_ENV=production python script.py

More Jobs

As time goes on, I have more cron jobs. For example, I have 10 more
scripts under /web/yourproject/scripts and 10 more commands to run. Now
we have to think about how to manage these tons of jobs, first we do not
want to put these jobs in one place, second we do not want to repeat the
same path and environment parameter on all script jobs. Luckily, you can do
that easily with Plan, basically, every Plan instance is a
group of cron jobs:

$ cp schedule.py schedule_commands.py
$ cp schedule.py schedule_scripts.py

Now we modify schedule_commands.py:

from plan import Plan

cron = Plan("commands")

cron.command('top', every='4.hour', output=
 dict(stdout='/tmp/top_stdout.log',
 stderr='/tmp/top_stderr.log'))
cron.command('yourcommand', every='sunday', at='hour.12 minute.0 minute.30')
more commands here

if __name__ == "__main__":
 cron.run()

Then schedule_scripts.py:

from plan import Plan

cron = Plan("scripts", path='/web/yourproject/scripts',
 environment={'YOURAPP_ENV': 'production'})

cron.script('script.py', every='1.day')
cron.script('script_2.py', every='1.month', at='hour.12 minute.0')
more scripts here

if __name__ == "__main__":
 cron.run()

A problem arises, how do you update your crontab content when you have two
schedule files, it is simple, do not use write run-type, instead use
update run-type here. write run-type will replace the whole crontab
cronfile content with that Plan object’s cron content, update will just
add or update the corresponding block distinguished by your Plan object name
(here is "commands" and "scripts").

If you are still interested, now is your time to move on to the next part.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Job Definition

This part shows you how to define a cron job in Plan. One job takes the
following parameters task, every, at, path, environment
and output, you can have a look at Job for more details.
Here is one example:

from plan import Job

job = Job('ruby script.rb', every='1.month', at='day.5',
 path='/web/scripts', output='null',
 environment={'RAILS_ENV': 'production'})

Every

Every is used to define how often the job runs. It takes the following
values:

[1-60].minute
[1-24].hour
[1-31].day
[1-12].month
jan feb mar apr may jun jul aug sep oct nov dec
and all of those full month names(case insensitive)
sunday, monday, tuesday, wednesday, thursday, friday, saturday
weekday, weekend (case insensitive)
[1].year

There might be some cron time intervals that you cannot describe with Plan
because of the limited supported syntax. No worries, every takes raw cron
syntax time definition, and in this case, your at value will be ignored.
For example, I can do something like this:

job = Job('demo', every='1,2 5,6 * * 3,4')

Also, every can be special predefined values, and in this case, your at value
will be ignored too, they are:

"yearly" # Run once a year at midnight on the morning of January 1
"monthly" # Run once a month at midnight on the morning of the first day
 # of the month
"weekly" # Run once a week at midnight on Sunday morning
"daily" # Run once a day at midnight
"hourly" # Run once an hour at the beginning of the hour
"reboot" # Run at startup

At

At value is used to define when the job runs. It takes the following values:

minute.[0-59]
hour.[0-23]
hour:minute
day.[1-31]
sunday, monday, tuesday, wednesday, thursday, friday, saturday
weekday, weekend (case insensitive)

How about multiple at values, you can do that by using one space to seperate
multiple values, for example I want to run one job every day at 12:15 and
12:45, I can define it like this:

job = Job('onejob', every='1.day', at='hour.12 minute.15 minute.45')
or even better
job = Job('onejob', every='1.day', at='12:15 12:45')

Path

The path you want to change to before the task is executed, defaults to the
current working directory. For job types that do not need one path, this
will be ignored, for example, CommandJob.

Environment

The bash environment you want to run the task on. You should use one Python
dictionary to define your environment key values pairs.

Output

The output redirection for the task. It takes following values:

"null"
any raw output string
one dictionary to define your stdout and stderr

For example:

job = Job('job', every='1.day', output='null')
job = Job('job', every='1.day', output='> /tmp/stdout.log 2> /tmp/stderr.log')
job = Job('job', every='1.day', output=
 dict(stdout='/tmp/stdout.log', stderr='/tmp/stderr.log'))

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Plan Definition

This part shows how to initialize one plan object. One plan object takes
parameters name, path, environment, output and user,
for more details check out Plan. Path, environment and output
are the same with Job Definition, they are used to set global
parameters for all jobs registered on this plan object. If a job does not
set one parameter, and a global parameter is set, the global one will be
used.

Name

The name of one plan object. Should be passed as the first parameter.

User

If you want to run crontab command with a certain user, remember to set
this parameter.

Environment Variable

New in version 0.5.

Sometimes you need to set environment variable in the crontab. For example
you want to change crontab email settings, you can do it as simple like this:

cron = Plan()
cron.env('MAILTO', 'user@example.com')
cron.command('command', every='1.day')
cron.run('check')

For more details check out env().

Bootstrap

Maybe you want to do some bootstrap work before you run your plan object,
like you used one third party library in your Python script, you need to
install it before running. You can do that as simple like this:

cron = Plan()
cron.bootstrap('pip install requests')
cron.bootstrap(['pip install Sphinx', 'sphinx-quickstart'])
cron.script('crawl.py', every='1.day', path='/tmp')
cron.run('check')

Bootstrap takes one command or a list of commands, for more details check out
bootstrap().

Patterns

One Plan object should be a group of cron jobs. The name of the plan object
should be unique so that this object can be distinguished from another object.
Now you can have multiple plan object around and run it with update run_type,
only the corresponding content block will be renewed in the cronfile, for more
details go to Run Types part.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Job Types

There are several Plan built-in cron job types.

Command Job

One command is a common executable program, check out CommandJob.
Plan comes with one shortcut for register CommandJob command().

Script Job

One script should be one Python pyfile, check out ScriptJob.
Plan comes with one shortcut for register ScriptJob script().

Module Job

One module should be one Python module, check out ModuleJob.
Plan comes with one shortcut for register ModuleJob module().

Raw Job

Maybe these job types are not what you want, you can define your job with
raw cron syntax:

cron = Plan()
cron.raw('cd /tmp && ruby script.rb > /dev/null 2>&1', every='1.day')

In this particular case, you should try Job
job = Job('ruby script.rb', every='1.day', path='/tmp', output='null')
cron.job(job)

Define Your Own Job Types

You can define your own job types if you want. Before we talk about how to
do that, let’s have a look on what a shortcut like command()
do:

plan = Plan()
job = CommandJob(*args, **kwargs)
plan.job(job)

What job() does is registering one job on this plan object.
If you want to write one own job type, just define one subclass of
Job and override task_template(), let’s see
what CommandJob looks like inside Plan:

class CommandJob(Job):

 def task_template(self):
 return '{task} {output}'

The ScriptJob and ModuleJob are almost the same, with different
template:

ScriptJob
return 'cd {path} && {environment} %s {task} {output}' % sys.executable
ModuleJob
return '{environment} %s -m {task} {output}' % sys.executable

Now I want to have one job type to run ruby script, I can define it like this:

class RubyJob(Job):

 def task_template(self):
 return 'cd {path} && {environment} /usr/bin/ruby {task} {output}'

And use it like this:

plan = Plan()
job = RubyJob(*args, **kwargs)
plan.job(job)

Mostly If CommandJob, ScriptJob and ModuleJob are not what you
need, you can just use Job or even RawJob.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Run Types

There are several mode Plan can run on, you shoud pass the run_type parameter
when you run your plan object, check out run(), for example:

cron = Plan()
cron.run('check') # could be 'check', 'write', 'update', 'clear'

Check

Check mode will just echo your cron syntax jobs out in the terminal and your
crontab file will not be updated. This is used to check whether everything
goes fine as you expected.

Write

Write mode will erase everything from your crontab cronfile and write this
plan object’s cron content to the cronfile, your crontab file will be fresh.

Update

Update mode will find the corresponding block of this plan object in the
crontab cronfile and replace it with the latest content. The other content
will be keeped as they were, this is distinguished by your plan object name,
so make sure it’s unique if you have more than one plan object.

Clear

Clear mode will find the corresponding block of this plan object in the
crontab cronfile and erase it. The other content will not be affected.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Commands

Command line tools that come with Plan itself.

Plan-Quickstart

Run plan-quickstart in your terminal to get a quickstart example schedule
file, by default, this will add the file named schedule.py in your current
working directory, you can use plan-quickstart --path filepath to set your
example file path. Run plan-quickstart --help for help.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

API

This part covers some interfaces of Plan.

Plan Object

	
class plan.Plan(name='main', path=None, environment=None, output=None, user=None)

	The central object where you register jobs. One Plan instance should
manage a group of jobs.

	Parameters:	
	name – the unique identity for this plan object, default to be main

	path – the global path you want to run the task on.

	environment – the global crontab job bash environment.

	output – the global crontab job output logfile for this object.

	user – the user you want to run crontab command with.

	
bootstrap(command_or_commands)

	Register bootstrap commands.

	Parameters:	command_or_commands – One command or a list of commands.

	
command(*args, **kwargs)

	Register one command, takes the same parameters as
Job.

	
comment_begin

	Comment begin content for this object, this will be added before
the actual cron syntax jobs content. Different name is used to
distinguish different Plan object, so we can locate the cronfile
content corresponding to this object.

	
cron_content

	Your schedule jobs converted to cron syntax.

	
crons

	Return a list of registered jobs’s cron syntax content.

	
env(variable, value)

	Add one environment variable for this Plan object in the crontab.

New in version 0.5.

	Parameters:	
	variable – environment variable name.

	value – environment variable value.

	
environment_variables

	Return a list of crontab environment settings’s cron syntax
content.

New in version 0.5.

	
job(job)

	Register one job.

	Parameters:	job – one Job instance.

	
module(*args, **kwargs)

	Register one module, takes the same parameters as
Job.

	
raw(*args, **kwargs)

	Register one raw job, takes the same parameters as
Job.

	
read_crontab()

	Get the current working crontab cronfile content.

	
run(run_type='check')

	Use this to do any action on this Plan object.

	Parameters:	run_type – The running type, one of (“check”, “write”,
“update”, “clear”), default to be “check”

	
run_bootstrap_commands()

	Run bootstrap commands.

	
script(*args, **kwargs)

	Register one script, takes the same parameters as
Job.

	
update_crontab(update_type)

	Update the current cronfile, used by run_type update or clear.
This will find the block inside cronfile corresponding to this Plan
object and replace it.

	Parameters:	update_type – update or clear, if you choose update, the block
corresponding to this plan object will be replaced
with the new cron job entries, otherwise, they
will be wiped.

	
write_crontab()

	Write the crontab cronfile with this object’s cron content, used
by run_type write. This will replace the whole cronfile.

Job Objects

	
class plan.Job(task, every, at=None, path=None, environment=None, output=None)

	The plan job base class.

	Parameters:	
	task – this is what the job does.

	every – how often does the job run.

	at – when does the job run.

	path – the path you want to run the task on,
default to be current working directory.

	environment – the environment you want to run the task under.

	output – the output redirection for the task.

	
cron

	Job in cron syntax.

	
main_template

	The main job template.

	
parse_at()

	Parse at value into (at_type, moment) pairs.

	
parse_every()

	Parse every value.

	Returns:	every_type.

	
parse_month(month)

	Parses month into month numbers. Month can only occur in
every value.

	Parameters:	month – this parameter can be the following values:

jan feb mar apr may jun jul aug sep oct nov dec
and all of those full month names(case insenstive)
or <int:n>.month

	
parse_time()

	Parse every and at into cron time syntax:

* * * * * command to execute
┬ ┬ ┬ ┬ ┬
│ │ │ │ │
│ │ │ │ │
│ │ │ │ └─── day of week (0 - 7) (0 to 6 are Sunday to Saturday)
│ │ │ └───── month (1 - 12)
│ │ └─────── day of month (1 - 31)
│ └───────── hour (0 - 23)
└─────────── minute (0 - 59)

	
parse_week(week)

	Parses day of week name into week numbers.

	Parameters:	week – this parameter can be the following values:

sun mon tue wed thu fri sat
sunday monday tuesday wednesday thursday friday
saturday
weekday weedend(case insenstive)

	
preprocess_at(at)

	Do preprocess for at value, just modify “12:12” style moment into
“hour.12 minute.12” style moment value.

	Parameters:	at – The at value you want to do preprocess.

	
process_template(template)

	Process template content. Drop multiple spaces in a row and strip
it.

	
produce_frequency_time(frequency, maximum, start=0)

	Translate frequency into comma separated times.

	
task_in_cron_syntax

	Cron content task part.

	
task_template()

	The task template. You should implement this in your own job type.
The default template is:

'cd {path} && {environment} {task} {output}'

	
time_in_cron_syntax

	Cron content time part.

	
validate_time()

	Validate every and at value.

every can be:

[1-60].minute [1-24].hour [1-31].day
[1-12].month [1].year
jan feb mar apr may jun jul aug sep oct nov dec
sun mon tue wed thu fri sat weekday weekend
or any fullname of month names and day of week names
(case insensitive)

at:

when every is minute, can not be set
when every is hour, can be minute.[0-59]
when every is day of month, can be minute.[0-59], hour.[0-23]
when every is month, can be day.[1-31], day of week,
 minute.[0-59], hour.[0-23]
when every is day of week, can be minute.[0-59], hour.[0-23]

at can also be multiple at values seperated by one space.

	
class plan.CommandJob(task, every, at=None, path=None, environment=None, output=None)

	The command job.

	
task_template()

	Template:

'{task} {output}'

	
class plan.ScriptJob(task, every, at=None, path=None, environment=None, output=None)

	The script job.

	
task_template()

	Template:

'cd {path} && {environment} %s {task} {output}' % sys.executable

	
class plan.ModuleJob(task, every, at=None, path=None, environment=None, output=None)

	The module job.

	
task_template()

	Template:

'{environment} %s -m {task} {output}' % sys.executable

	
class plan.RawJob(task, every, at=None, path=None, environment=None, output=None)

	The raw job.

	
task_template()

	Template:

'{task}'

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Python 3 Support

Plan and all of its dependencies support Python 3 so you can start managing
your cron jobs in Python 3 Now. Though, Python 3 currently has very few users
and a lot PyPI provided libraries do not support Python 3 yet. If you are a
beginner, unless you are aware of what you are doing, I recommend using Python
2.x until the whole ecosystem is ready.

Requirements

If you want to use Plan with Python 3 you need to use Python 3.3 or higher.
Older versions are not going to be supported.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Plan 0.5 documentation

Plan Changelog

Version 0.1

First public preview release.

Version 0.2

Released on June 20th 2014

	various bugfixes

	added support for Python 3.x

Version 0.3

Bugfix release, released on July 11th 2014

Version 0.4

Released on July 30th 2014

	replace SystemExit with PlanError when something went wrong

Version 0.5

Released on Feb 16th 2015

	added environment variable support

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Plan 0.5 documentation

License

Plan is licensed under BSD License.

Authors

Plan is written by Shipeng Feng and various contributors:

See git contributors [https://github.com/fengsp/plan/graphs/contributors] for more details.

Any suggestions or contributions are welcome.

Plan License

Copyright (c) 2014 by Shipeng Feng.

Some rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Plan 0.5 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 plan	

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Plan 0.5 documentation

Index

 B
 | C
 | E
 | J
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W

B

 	

 	bootstrap() (plan.Plan method)

C

 	

 	command() (plan.Plan method)

 	CommandJob (class in plan)

 	comment_begin (plan.Plan attribute)

 	

 	cron (plan.Job attribute)

 	cron_content (plan.Plan attribute)

 	crons (plan.Plan attribute)

E

 	

 	env() (plan.Plan method)

 	

 	environment_variables (plan.Plan attribute)

J

 	

 	Job (class in plan)

 	

 	job() (plan.Plan method)

M

 	

 	main_template (plan.Job attribute)

 	module() (plan.Plan method)

 	

 	ModuleJob (class in plan)

P

 	

 	parse_at() (plan.Job method)

 	parse_every() (plan.Job method)

 	parse_month() (plan.Job method)

 	parse_time() (plan.Job method)

 	parse_week() (plan.Job method)

 	

 	Plan (class in plan)

 	plan (module)

 	preprocess_at() (plan.Job method)

 	process_template() (plan.Job method)

 	produce_frequency_time() (plan.Job method)

R

 	

 	raw() (plan.Plan method)

 	RawJob (class in plan)

 	read_crontab() (plan.Plan method)

 	

 	run() (plan.Plan method)

 	run_bootstrap_commands() (plan.Plan method)

S

 	

 	script() (plan.Plan method)

 	

 	ScriptJob (class in plan)

T

 	

 	task_in_cron_syntax (plan.Job attribute)

 	task_template() (plan.CommandJob method)

 	

 	(plan.Job method)

 	(plan.ModuleJob method)

 	(plan.RawJob method)

 	(plan.ScriptJob method)

 	

 	time_in_cron_syntax (plan.Job attribute)

U

 	

 	update_crontab() (plan.Plan method)

V

 	

 	validate_time() (plan.Job method)

W

 	

 	write_crontab() (plan.Plan method)

 Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_images/plan-logo.png
121/A

o7

search.html

 Navigation

 		
 index

 		
 modules |

 		Plan 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Shipeng Feng.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/plan-logo.png
121/A

o7

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

